Round Jaws – More Possibilities

## RINDEX MULTI JAWS

A Simple "Quick change" system – For Quality and Profit

WWW.RINDEX.COM - MADE IN SWEDEN



## MPC AUTOMATION SYSTEMS



## DOCUMENTATION

| e Rindex family – The full system displayed1 |
|----------------------------------------------|
|----------------------------------------------|

## **RINDEX SOFT & HARD JAWS**

| Rindex multi jaws |    |
|-------------------|----|
| Introduction      | 5  |
| Advantages        | 9  |
| Measurments       | 11 |
| Product Assembly  | 13 |
| User Manual       |    |

## **PROFITABLE FACTS - BY SANDVIK COROMONT**

Jaw Purchase cost Vs. Jaw User Cost

Tool cost Vs. total cost

## THE RINDEX FAMILY

## **Our Clamping Product Line**

#### **GRIPPEX BAR PULLER**

#### **RINDEX JAWS**

\* SIX CLAMPING POSITIONS

- \* QUICK JAW CHANGE
- \* 100 % CLAMPING SURFACE

#### RINDEX COUNTER -WEIGHTS



\* CENTRIFUGAL COMPENSATION

- \* ROUNDER PARTS, NO REWORK
- **\* FITS YOUR EXISTING CHUCK**

#### **SMART-NUTS**

**\* THREE MODELS** 

\* FOR BARS 1 - 105 MM

**\* ROBOT PICK-UT UNIT** 

#### MULTI-NUTS

#### TRIPOD INDEXING TOOL



\* PRESET LOCATION OF TNUT

\* QUICK CHANGE LOCATION OF T-NUT





\* QUICK JAW CHANGE FOR YOUR STANDARD JAWS \* USE YOUR 10" JAWS ON YOUR 8" CHUCK

\* USE YOUR 8" JAWS ON YOUR 10" CHUCK



ORIGINAL DRAWING BY BO SVENSSON, . FOUNDER OF MPC AUTOMATION SYSTEMS



## **RINDEX CLAMPING JAWS**

## **DIFFERENT MODELS**

### **BASE JAWS**

STANDARD BASE JAW

#### ADVANCED BASE JAW

# W.

#### QUICK CHANGE ASSEMBELY TOOL - FOR T-NUT AND BASE JAWS



## **TOP JAWS**

#### HEXAGON SOFT TOP JAWS



ROUND SOFT TOP JAWS



HARD TOP JAWS





## **A SWISS ARMY KNIFE FOR WORK HOLDING**



## Round(!) Soft Jaws - New Possibilities

100 % CLAMPING SURFACE

MORE JAWS FOR YOUR MONEY

> For your 6", 8", 10" 12" сниск

CLAMPING RANGE FROM Ø10 – 300 mm

#### Why round soft jaws?

With Rindex Multi Jaws you can turn the jaws 360 degrees, giving you six optional clamping positions using your own chuck. You simply get more jaws for your money. With competing quick-change jaw systems, you may need to buy a new expensive chuck that only works with special jaws.

#### MORE than quick-change jaws

Because of the round shape of Rindex, you can achieve 100 % clamping surface. This means less deformation- and clamping marks, reduced rework and inspection time. With fully enclosing jaws up to Ø90 mm. you still have two more positions for clamping, without changing the position of the base jaw. If you want to clamp on a bar, or clamp as close to the center as possible, use hexagon shaped jaws.

#### Clamping range from Ø10 – 300 mm. on your 6", 8", 10" 12" chuck

With our soft- or hard top jaws, the base jaw only need to take on three different positions to cover the entire chuck surface. This operation takes less than 2 minutes with our smart t-nut. You can choose between large clamping surface when base jaws are mounted close to the chuck center or make smaller cuts on the top jaw when the base jaws are mounted further out on the chuck, using all the 6 positions available on the round top jaw for longer jaw lifetime.



## Why use quick change jaws?

**USER FRIENDLY** 

PROFIT

Less rework and Material waste

#### Economy

The real cost of jaws is when in use, not when purchased. If a machine cost  $\leq 100$  an hour, and you need to change the position of the jaws 3 times a day (30 minutes), you have a changeover cost of  $150 \leq a$  day. By changing jaw positions within minutes with great repetition of 20  $\mu$ , you could increase your margin by almost 20 % for each eight-hour shift (800  $\leq$ ). Read more about profits and costs in section "PROFITABLE FACTS - BY SANDVIK COROMANT".

#### Efficiency

Since you do not loose machining time when changing diameters, you can manufacture parts one by one and get the first correct part much quicker, reducing rework, inspection time and waste. Great repeatability means less reboring. This will earn you a lot of time and money. F

urthermore, jaws are in the correct position after rotation and no damage or loss of time will come from simple mistakes due to misplaced jaws. If you have frequently reoccurring jobs, you can save a set of jaws for the next batch, resulting in reduced set-up time.

With our special t-nut, which defaults to using only three fixed positions for the base jaw, you'll return to the correct position with the base- and top jaw in minutes.







für das innovativste Produkt der Kategorio: Spannmittel

zur

dex

NI MA

0

0

MAWA

rerliehen an

**C** Automation stems AB

rs. 10. Supposidant 2011

EMO



#### 100 % clamping surface

- Get your first part correct faster
- Less measuring, rework, grinding and waste
- Aluminum jaws for soft clamping
- Steel jaws and counterweights fr high or low clamping force

#### 6 positions available

- \* Cost efficient
- One jaw set ready for multiple operations
- Repeat accuracy 0,020 μ
- Save for recurrent jobs
- Easy to use in between shifts and jobs
- Easy to keep track of
- Plan for future jobs ahead

#### Cover the full diameter of the chuck

- Clamping range between Ø 8 Ø 300 mm.
- 100% clamping surface up to Ø 90 mm.
- I.D. and O.D. clamping
- Use Counterweights for even softer clamping







## **Quick Change Base Jaws**

## Cover the full diameter of the chuck

## 3-NUT

For QUICK CHANGE AND REPETABILITY



#### Patent pending 3-nut

A 3-nut is a t-nut with three holes instead of two, which makes it almost as long as the t-nut slot. By fastening the 3-nut with a springy screw, it stays in the same place that gives you the following advantages.

- There is no risk of misplacing base jaws onto the wrong chuck teeth, which takes time and costs money
- You will get better repeatability
- You can still clamp on all diameters of the chuck be cause the top jaws have 6 jaw positions \* 3 t-nut positions
  = 18 positions

#### Move the base jaws position within 2 minutes

Locate base jaw close to chuck center for:

- 100 % clamping surface
- small diameters
- Bar clamping

Locate base jaw in the middle or end of chuck surface for:

- Mid large size parts
- Large clamping surface
- Small clamping surface save soft jaw lifetime (by making smaller cuts)

#### Assembly

- 1. Push the 3-nut all the way down in the chucks t-nut slot
- 2. Fasten springy screw loosely









## **STANDARD BASE- AND TOP JAWS**

## **6** SURFACES FOR CLAMPING

## **FITS YOUR EXISTING CHUCK**

## **Q**UICK JAW CHANGE

## LARGE CLAMPING SURFACE

#### **Base Jaw**

With 6 top jaw positions For standard chucks chuck sizes 6", 8", 10" & 12"

#### Soft top jaws

- 2 models, standard and hexagon shape
- 2 materials, steel and aluminum
- 2 hights, low (37,5 mm) and high (47,5 mm)

#### Cover the full size of the chuck

Diameter from 8-300 mm.

For I.D. and O.D. clamping

Compatible with 3-nut for fast change over











## **ADVANCED BASE- AND TOP JAWS**

## **GREAT REPEATABILITY**

## **C**OMPATIBLE WITH **C**OUNTERWEIGHTS



#### **Base Jaw**

with 6 top jaw positions With great repeatability 0,02 mm Compatible with Rindex Counterweights chuck sizes, 6", 8", 10" & 12"





2 models, standard and hexagon shape 2 materials, steel and aluminum

2 hights, low (37,5 mm) and high (47,5 mm)



#### Centrifugal force compensation

Softer and harder Clamping possible

For I.D. och O.D. clamping

Add patented extra weghts for perfect cutting data

For your 8-12 inch chcuk

## CATALOGUE

BASE JAWS

## ROUND TOP JAWS

## HEXAGON TOP JAWS

## STEEL AND ALUMINUM

| S=Stan   | dard model, A = Advanced model | IMZ | = | Material |
|----------|--------------------------------|-----|---|----------|
| – A= Alu | iminium, – S= Steel            | A   | = | Diameter |
| 1= heigł | nt 37,5, 2 = 47,5              |     |   |          |
| 1=serrat | ion 1,5mm x 60, 2 = 1/16 x 90  |     |   |          |
|          |                                |     |   |          |

| antification or | Serration  | M1       | M2       | ۵   | н      | Weight |
|-----------------|------------|----------|----------|-----|--------|--------|
| J06S-S11        | 15mm × 60  | Standard | Steel    | Ø66 | 25mm   | kg .   |
| J06S-S21        | ,,o        | otanaana | Steel    | 200 | 37.5mm |        |
| J06S-A11        |            |          | Aluminum |     | 25mm   |        |
| J06S-A21        |            |          | Aluminum |     | 37.5mm |        |
| J06A-S11        |            | Advanced | Steel    |     | 25mm   |        |
| J06A-S21        |            |          | Steel    |     | 37,5mm |        |
| J06A-A11        |            |          | Aluminum |     | 25mm   |        |
| J06A-A21        |            |          | Aluminum |     | 37,5mm |        |
| J08S-S11        | 1,5mm x 60 | Standard | Steel    | Ø88 | 37,5mm |        |
| J08S-S21        |            |          | Steel    |     | 47,5mm | 3,9    |
| J08S-A11        |            |          | Aluminum |     | 37,5mm | 1,3    |
| J08S-A21        |            |          | Aluminum |     | 47,5mm |        |
| J08A-S11        |            | Advanced | Steel    |     | 37,5mm |        |
| J08A-S21        |            |          | Steel    |     | 47,5mm |        |
| J08A-A11        |            |          | Aluminum |     | 37,5mm |        |
| J08A-A21        |            |          | Aluminum |     | 47,5mm |        |
| J10S-S11        | 1,5mm x 60 | Standard | Steel    | Ø88 | 37,5mm |        |
| J10S-S21        |            |          | Steel    |     | 47,5mm | 3,9    |
| J10S-A11        |            |          | Aluminum |     | 37,5mm | 1,3    |
| J10S-A21        |            |          | Aluminum |     | 47,5mm |        |
| J10A-S11        |            | Advanced | Steel    |     | 37,5mm |        |
| J10A-S21        |            |          | Steel    |     | 47,5mm |        |
| J10A-A11        |            |          | Aluminum |     | 37,5mm |        |
| J10A-A21        |            |          | Aluminum |     | 47,5mm |        |
| J12S-S11        | 1,5mm x 60 | Standard | Steel    | Ø88 | 37,5mm |        |
| J12S-S21        |            |          | Steel    |     | 47,5mm | 3,9    |
| J12S-A11        |            |          | Aluminum |     | 37,5mm | 1,3    |
| J12S-A21        |            |          | Aluminum |     | 47,5mm |        |
| J12A-S11        |            | Advanced | Steel    |     | 37,5mm |        |
| J12A-S21        |            |          | Steel    |     | 47,5mm |        |
| J12A-A11        |            |          | Aluminum |     | 37,5mm |        |
| J12A-A21        |            |          | Aluminum |     | 47,5mm |        |



#### Base Jaw

| BJ06S1 | BJ=Base Jaw                           | A | = | Diameter            |
|--------|---------------------------------------|---|---|---------------------|
|        | 06=chuck size inch                    | Н | = | Hight               |
|        | S=Standard model, A = Advanced model  | С | = | Screw hole diameter |
|        | 1=serration 1,5mm x 60, 2 = 1/16 x 90 | В | = | Screw hole distance |

#### Base Jaws

|                   |            |     |        |    |    | Weight |
|-------------------|------------|-----|--------|----|----|--------|
| Identification no | Serration  | Α   | н      | С  | В  | kg     |
| BJ06S1            | 1,5mm x 60 | Ø55 | 24,6mm | 12 | 20 | 1      |
| BJ06A1            |            |     |        |    |    |        |
| BJ08S1            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ08A1            |            |     |        |    |    |        |
| BJ10S1            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ10A1            |            |     |        |    |    |        |
| BJ12S1            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ12A1            |            |     |        |    |    |        |
| BJ06S2            | 1/16 x 90  | Ø55 | 24,6mm | 12 | 20 | 1      |
| BJ06A2            |            |     |        |    |    |        |
| BJ08S2            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ08A2            |            |     |        |    |    |        |
| BJ10S2            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ10A2            |            |     |        |    |    |        |
| BJ12S2            |            | Ø77 | 24,6mm | 14 | 25 | 1,5    |
| BJ12A2            |            |     |        |    |    |        |



| RTJ06S-S11 | RTJ=Round Top Jaw, HTJ= Hexagon top jaw<br>06= Chuck size inch, 08,10,12<br>S=Standard model, A = Advanced model<br>- A= Aluminium, - S= Steel<br>1= height 37,5, 2 = 47,5<br>1=serration 1,5mm x 60, 2 = 1/16 x 90 | M1<br>H<br>M2<br>A | =<br>=<br>= | Rindex Model<br>Hight<br>Material<br>Diameter |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----------------------------------------------|
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----------------------------------------------|

| Identification no Serration M1 M2 A H kg .                |  |
|-----------------------------------------------------------|--|
|                                                           |  |
| RTJU65-S11 I,5mm x 60 Standard Steel 206 Z5mm .           |  |
| RTJ065-S21 Steel 37,5mm .                                 |  |
| RTJU65-All Aluminum Zomm .                                |  |
| RTJU65-A21 Aluminum 37,5mm .                              |  |
| RTJU6A-S11 Advanced Steel Z5mm .                          |  |
| RTJU6A-SZI Steel 37,5mm .                                 |  |
| RTJ06A-A11 Aluminum 25mm .                                |  |
| RTJU6A-A21 Aluminum 37,5mm .                              |  |
| RTJ08S-S11 1,5mm x 60 Standard Steel 1288 37,5mm .        |  |
| RTJ08S-S21 Steel 47,5mm 3,9                               |  |
| RTJ08S-A11 Aluminum 37,5mm .                              |  |
| RTJ08S-A21 Aluminum 47,5mm .                              |  |
| RTJ08A-Sti Advanced Steel 37,5mm .                        |  |
| RTJ08A-S21 Steel 47,5mm .                                 |  |
| RTJ08A-A11 Aluminum 37,5mm .                              |  |
| BTJ08A-A21 Aluminum 47,5mm                                |  |
| RTJ10S-S11 1,5mm x 60 Standard Steel 1288 37,5mm .        |  |
| RTJ105-S21 Steel 47,5mm .                                 |  |
| RTJ10S-A11 Aluminum 37,5mm .                              |  |
| RTJ10S-A21 Aluminum 47,5mm .                              |  |
| RTJ10A-S11 Advanced Steel 37,5mm .                        |  |
| RTJ10A-S21 Steel 47,5mm .                                 |  |
| RTJ10A-A11 Aluminum 37,5mm .                              |  |
| RTJ10A-A21 Aluminum 47,5mm                                |  |
| RTJ12S-S11 1,5mm x 60 Standard <b>Steel 1288 37,5mm</b> . |  |
| RTJ12S-S21 Steel 47,5mm .                                 |  |
| RTJ12S-A11 Aluminum 37,5mm .                              |  |
| RTJ12S-A21 Aluminum 47,5mm                                |  |
| RTJ12A-S11 Advanced Steel 37,5mm .                        |  |
| RTJ12A-S21 Steel 47,5mm                                   |  |
| BTJ12A-A11 Aluminum 37,5mm                                |  |
| RTJ12A-A21 Aluminum 47,5mm                                |  |



## YOUR BUSINESS IN NUMBERS

DATA BY SANDVIK COROMANT \*

## **USER COST REDUCTIONS**

The purchase cost of standard soft jaws is a tiny fraction of the user cost. The total cost (purchase- and user cost) for Rindex Multi Jaws is about 3.5% of standard jaws \*.



\* We are assuming that 3 sets of regular soft jaws are consumed in one year, compared to one set of Rindex Multi Jaws





## SAVINGS ON TOOLS IS A FALSE ECONOMY

Cutting tools, jaws etc. amounts to about 3% of total costs. Savings on accessories does not effect on total costs. A quality quick change jaw system will reduce your machine- and labor costs, which amount to over 50% of the total costs.



\* https://www.sandvik.coromant.com/sv-se/services/manufacturing/pages/default.aspx



## **GOODBYE SET-UP COSTS**

## DATA BY SANDVIK COROMANT \*



## **CALCULATIONS FROM CASE STUDY\*\***



#### HOW IT'S DONE

Machining

Jaw change-over time amounts to 13% of "set-up time and machining" time. Adding inspection- and rework time, non-productive tasks amount to 42% that could be spent on machining instead. Use Rindex Multi Jaws for speed and quality.

\* https://www.sandvik.coromant.com/sv-se/services/manufacturing/pages/default.aspx

\*\* "Head & Base Production Optimization: Setup Time Reduction". Haiqing Guo, 2007



## PAYBACK TIME AND YEARLY PROFITS



#### HOW TO MAKE \$42 300 IN ONE YEAR

,Make 2 jaw changes a day in 2 machines during 1 year (230 workdays) and save \$ 42 300 (hourly machine rate \$ 80). Profits dont include quality aspects such as less rework and inspection time. Make your own calculations at **www.rindex.com** 

| HOW IT'S DONE                         | Operation             | Conventio<br>nel Jaws | Rindex<br>Jawrs |
|---------------------------------------|-----------------------|-----------------------|-----------------|
| * MINIMAL SET-UP & CHANGE OVER TIME   | Locating jaws         | 5 min                 | 0               |
|                                       | Jaw change            | 10 min                | 30 sec          |
|                                       | Reboring of jaws      | 20 min                | 0               |
| * TOP JAWS WITH 6 DIFFERENT POSITIONS | Jaw Change / day      | 2                     | 2               |
| * CHANGE DIAMETER IN 1 MINUTE.        | Number of machines    | 2                     | 2               |
|                                       | Working days / year   | 230                   | 230             |
|                                       | Machine cost/ \$ hour | \$ 80                 | \$ 80           |
|                                       | Total cost            | \$ 43 000             | \$ 600          |

| Profit per Year | \$ 42 300 |
|-----------------|-----------|
|-----------------|-----------|



## **RINDEX T-NUTS**

## **DIFFERENT MODELS**

### **RINDEX T-NUTS**

RINDEX 2-NUTRINDEX 5-NUTSPRINGY STOP SCREW TQUICK CHANGE FORKEEP T-NUT IN PLACESTANDARS JAW





RINDEX HOLE IN HOLE NUT USE 10" JAWS ON 8" CHUCKS AND VISE VERSA





## BILD PÅ CHUCK MED T-NUTS OCH KANSKE STANDARDBACKAR I OLIKA LÄGEN





Centrifugal force compensating weights

For soft and hard clamping forces

For your existing chuck

## RINDEX COUNTERWEIGHTS

www.rindex.co

MADE IN SWEDEN





## MPC AUTOMATION SYSTEMS



## Documentation

| The Rindex family-the full system displayed | 1 |
|---------------------------------------------|---|
|---------------------------------------------|---|

## **Rindex Counterweights**

| Introduction | 3 |
|--------------|---|
|              |   |
| Advantages   | 5 |
| Measurments  | 7 |
|              |   |
| Accessories  | 7 |
|              |   |
| Manual       | 7 |

## Instruction manuals

## **COUNTERWEIGHTS**

## For your 8-12" CHUCK

## MOUNT WITHIN FIVE MINUTES

## HARD OR SOFT CLAMPING

#### **Soft Clamping**

With Rindex Counterweights you can manufacture delicate or thin-walled parts without deformations or clamping marks. You can use heavy top jaws with 100% clamping surface without losing clamping force as the spindle speed (RPM) increases. Rindex Counterweights allow you to compensate for any top jaw.

Competing centrifugal force compensating chucks are costly and do not take top jaw weights into account.

#### Increase speed - increase output

You can choose between turning fast, for high metal removal rate, or turning at an optimal spindle speed for increased cutting tool life. The latest cutting tool technology allows faster turning, meaning reduced cycle time and better surface structure.















## **Turning Possibilities**

#### HARD OR SOFT CLAMPING

#### HARD OR SOFT JAWS

HIGH SPEED TURNING

#### Hard and soft clamping possible

Set the clamping force as low as possible for soft I.D. or O.D. clamping.

Set clamping force as high as necessary for high torque operations, without losing clamping force with spindle speed (RPM)

#### Add extra weights

Compensate for top jaw weight due to size and material. Let the different tools operate at optimal clamping force and spindle speed.

#### Produce perfect parts from the start

Manufacture parts within requirements from the start. Save inspection time, cut rework and material waste.

Machinists often set clamping force by chance, or worse, clamp too hard to be on the safe side. When clamping on soft or thin-walled parts your first parts will not meet tolerance requirements. This means wasting material and machining time as inspection- and rework time increase. Staying well within tolerance requirements from the start.

#### Use correct cutting data for your cutting tools

To get perfect surface structure, you may want to experiment with RPM without worrying about clamping too hard or too soft. Follow instructions from your tool provider for each operation.









## **Turning Possibilities**

QUALITY

#### **HIGH SPEED MACHINING**

#### **OPTIMAL CUTTING DATA**

## NO CLAMPING MARKS

#### High Quality parts from the start

- Use low clamping force with heavy and enclosing jaws
- Use high clamping force for high torque operations
- No Clamping marks fewer quality checks
- Rounder parts less material waste

#### Maximal spindle speed optional

- Increase metal removal rate and parts per hour
- Superior surface finish
- Shorter delivery time

#### **Optimal clamping force for I.D. and O.D. clamping**

- Additional weights for top jaw compensation
- Follow instructions from your cutting tool provider
- Extra weights can decrease pressure as RPM increases,

#### **Compatible with standard chucks**

- One size available for 8" and 10" chucks
- Use large surface quick change jaws for increased profit
- Make notes and save jaws for recurrent jobs







## Meassurments

## COMPATIBLE WITH RINDEX ADVANCED BASE JAWS

## COMPATIBLE WITH STANDARD 8", 10" &



#### Order number

#### CW10-RDX

| CW  | = Counterweights       |
|-----|------------------------|
| 10  | = Chuck size           |
| RDX | = For Rindex base jaws |



## ACCESSORIES

For Quality

## Higher Productivity

## **User Friendly**

We produce smart, simple and patented tools to compliment our offer to you, for your best experience.

Compliment with standard products for best result.





## **3-POD AND T-NUTS**

With our smart, simple and patented fastening solution, you will be able yo mount and disslocate counterweights much faster than you mount standard jaws.

#### 1. Specially dessigned t-nuts

keeps t-nuts in corret position while using...

#### 2. Magnetic counterweight

keeps CW-weights in place

#### 3. Our 3-Pod

Center and lock t-nuts, counterweights and base jaws in the correct position

In order to finetune centrifugal force compensation, use a clamping force meassurment tool and a boring ring for best result.



## RINDEX COUNTERWEIGHTS

## **24 HOURS IN A MANUFACTURING COMPANY**

When using an 8 hour shift, machine operating time is equal to about 4 hours. Out of these 4 hours, as much as half could be spent on rework and measurment time.

#### HOW MUCH CAN I MAKE?

\* 3 TIMES RPM INCREASE POSSIBLE \* CUT REWORK & INSPECTION TIME 80% LESS IN COMPONENT COSTS GAIN 300% GROSS MARGIN

#### DATA BY SANDVIK COROMANT\*



\* https://www.sandvik.coromant.com/sv-se/services/manufacturing/pages/default.aspx







If clamping force is set to 25 kN the spindle speed is limited to 2000 RPM.

This effects: parts/ minute, surface structure and cutting tool life oppertunities.

You will not be able to follow recommendations from your cutting tool provider.

## **SPEED UP - FOR FAST RETURNS**

Sensitive or thin walled parts need low initial clamping force. You want to use large, enclosing jaws for best results.

The size, weight and location of jaws will greatly reduce clamping forces as spindle speed (RPM) increase.

Our counterweights solves your problem: soft clamping and high RPM!







## **MACHINE TIME** +600%

**COMPONANT COST** -85%

### **AN EXAMPLE**

Average Output = 50 pieces an hour

Cut rework-, inspection and jaw change time and make 115 pieces (+131%).

Turn 3 times faster = 3 \* 115 = 345 pieces

THAT IS AN INCREASE WITH 600%. Or, According to Sandviks calculations, A **DECREASE IN COMPONENT COST BY 85%.** 

Let each part have its own goal. Choose between high quality, cost efficiency, profit or maximal number of parts per minute.



